Apache Druid
  • Technology
  • Use Cases
  • Powered By
  • Docs
  • Community
  • Apache
  • Download

โ€บTutorials

Getting started

  • Introduction to Apache Druid
  • Quickstart (local)
  • Single server deployment
  • Clustered deployment

Tutorials

  • Load files natively
  • Load files using SQL ๐Ÿ†•
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Theta sketches
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Tutorial: Run with Docker
  • Kerberized HDFS deep storage
  • Convert ingestion spec to SQL
  • Jupyter Notebook tutorials

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Data model
  • Data rollup
  • Partitioning
  • Ingestion spec
  • Schema design tips
  • Stream ingestion

    • Apache Kafka ingestion
    • Apache Kafka supervisor
    • Apache Kafka operations
    • Amazon Kinesis

    Batch ingestion

    • Native batch
    • Native batch: input sources
    • Migrate from firehose
    • Hadoop-based

    SQL-based ingestion ๐Ÿ†•

    • Overview
    • Key concepts
    • API
    • Security
    • Examples
    • Reference
    • Known issues
  • Task reference
  • Troubleshooting FAQ

Data management

  • Overview
  • Data updates
  • Data deletion
  • Schema changes
  • Compaction
  • Automatic compaction

Querying

    Druid SQL

    • Overview and syntax
    • SQL data types
    • Operators
    • Scalar functions
    • Aggregation functions
    • Multi-value string functions
    • JSON functions
    • All functions
    • Druid SQL API
    • JDBC driver API
    • SQL query context
    • SQL metadata tables
    • SQL query translation
  • Native queries
  • Query execution
  • Troubleshooting
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Nested columns
    • Multitenancy
    • Query caching
    • Using query caching
    • Query context

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Java runtime
  • Security

    • Security overview
    • User authentication and authorization
    • LDAP auth
    • Password providers
    • Dynamic Config Providers
    • TLS support

    Performance tuning

    • Basic cluster tuning
    • Segment size optimization
    • Mixed workloads
    • HTTP compression
    • Automated metadata cleanup

    Monitoring

    • Request logging
    • Metrics
    • Alerts
  • API reference
  • High availability
  • Rolling updates
  • Using rules to drop and retain data
  • Working with different versions of Apache Hadoop
  • Misc

    • dump-segment tool
    • reset-cluster tool
    • insert-segment-to-db tool
    • pull-deps tool
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Druid AWS RDS Module
  • Kubernetes
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Prometheus Emitter
  • kubernetes
  • Cardinality/HyperUnique aggregators
  • Select
  • Firehose (deprecated)
  • Native batch (simple)
  • Realtime Process
Edit

Configuring Apache Druid to use Kerberized Apache Hadoop as deep storage

Hadoop Setup

Following are the configurations files required to be copied over to Druid conf folders:

  1. For HDFS as a deep storage, hdfs-site.xml, core-site.xml
  2. For ingestion, mapred-site.xml, yarn-site.xml

HDFS Folders and permissions

  1. Choose any folder name for the druid deep storage, for example 'druid'

  2. Create the folder in hdfs under the required parent folder. For example, hdfs dfs -mkdir /druid OR hdfs dfs -mkdir /apps/druid

  3. Give druid processes appropriate permissions for the druid processes to access this folder. This would ensure that druid is able to create necessary folders like data and indexing_log in HDFS. For example, if druid processes run as user 'root', then

    hdfs dfs -chown root:root /apps/druid

    OR

    hdfs dfs -chmod 777 /apps/druid

Druid creates necessary sub-folders to store data and index under this newly created folder.

Druid Setup

Edit common.runtime.properties at conf/druid/_common/common.runtime.properties to include the HDFS properties. Folders used for the location are same as the ones used for example above.

common.runtime.properties

# Deep storage
#
# For HDFS:
druid.storage.type=hdfs
druid.storage.storageDirectory=/druid/segments
# OR
# druid.storage.storageDirectory=/apps/druid/segments

#
# Indexing service logs
#

# For HDFS:
druid.indexer.logs.type=hdfs
druid.indexer.logs.directory=/druid/indexing-logs
# OR
# druid.storage.storageDirectory=/apps/druid/indexing-logs

Note: Comment out Local storage and S3 Storage parameters in the file

Also include hdfs-storage core extension to conf/druid/_common/common.runtime.properties

#
# Extensions
#

druid.extensions.directory=dist/druid/extensions
druid.extensions.hadoopDependenciesDir=dist/druid/hadoop-dependencies
druid.extensions.loadList=["mysql-metadata-storage", "druid-hdfs-storage", "druid-kerberos"]

Hadoop Jars

Ensure that Druid has necessary jars to support the Hadoop version.

Find the hadoop version using command, hadoop version

In case there is other software used with hadoop, like WanDisco, ensure that

  1. the necessary libraries are available
  2. add the requisite extensions to druid.extensions.loadlist in conf/druid/_common/common.runtime.properties

Kerberos setup

Create a headless keytab which would have access to the druid data and index.

Edit conf/druid/_common/common.runtime.properties and add the following properties:

druid.hadoop.security.kerberos.principal
druid.hadoop.security.kerberos.keytab

For example

druid.hadoop.security.kerberos.principal=hdfs-test@EXAMPLE.IO
druid.hadoop.security.kerberos.keytab=/etc/security/keytabs/hdfs.headless.keytab

Restart Druid Services

With the above changes, restart Druid. This would ensure that Druid works with Kerberized Hadoop

โ† Tutorial: Run with DockerConvert ingestion spec to SQL โ†’
  • Hadoop Setup
    • HDFS Folders and permissions
  • Druid Setup
    • common.runtime.properties
    • Hadoop Jars
    • Kerberos setup
    • Restart Druid Services

Technologyโ€‚ยทโ€‚Use Casesโ€‚ยทโ€‚Powered by Druidโ€‚ยทโ€‚Docsโ€‚ยทโ€‚Communityโ€‚ยทโ€‚Downloadโ€‚ยทโ€‚FAQ

โ€‚ยทโ€‚โ€‚ยทโ€‚โ€‚ยทโ€‚
Copyright ยฉ 2022 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.