Apache Druid
  • Technology
  • Use Cases
  • Powered By
  • Docs
  • Community
  • Apache
  • Download

โ€บTutorials

Getting started

  • Introduction to Apache Druid
  • Quickstart (local)
  • Single server deployment
  • Clustered deployment

Tutorials

  • Load files natively
  • Load files using SQL ๐Ÿ†•
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Theta sketches
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Tutorial: Run with Docker
  • Kerberized HDFS deep storage
  • Convert ingestion spec to SQL
  • Jupyter Notebook tutorials

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Data model
  • Data rollup
  • Partitioning
  • Ingestion spec
  • Schema design tips
  • Stream ingestion

    • Apache Kafka ingestion
    • Apache Kafka supervisor
    • Apache Kafka operations
    • Amazon Kinesis

    Batch ingestion

    • Native batch
    • Native batch: input sources
    • Migrate from firehose
    • Hadoop-based

    SQL-based ingestion ๐Ÿ†•

    • Overview
    • Key concepts
    • API
    • Security
    • Examples
    • Reference
    • Known issues
  • Task reference
  • Troubleshooting FAQ

Data management

  • Overview
  • Data updates
  • Data deletion
  • Schema changes
  • Compaction
  • Automatic compaction

Querying

    Druid SQL

    • Overview and syntax
    • SQL data types
    • Operators
    • Scalar functions
    • Aggregation functions
    • Multi-value string functions
    • JSON functions
    • All functions
    • Druid SQL API
    • JDBC driver API
    • SQL query context
    • SQL metadata tables
    • SQL query translation
  • Native queries
  • Query execution
  • Troubleshooting
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Nested columns
    • Multitenancy
    • Query caching
    • Using query caching
    • Query context

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Java runtime
  • Security

    • Security overview
    • User authentication and authorization
    • LDAP auth
    • Password providers
    • Dynamic Config Providers
    • TLS support

    Performance tuning

    • Basic cluster tuning
    • Segment size optimization
    • Mixed workloads
    • HTTP compression
    • Automated metadata cleanup

    Monitoring

    • Request logging
    • Metrics
    • Alerts
  • API reference
  • High availability
  • Rolling updates
  • Using rules to drop and retain data
  • Working with different versions of Apache Hadoop
  • Misc

    • dump-segment tool
    • reset-cluster tool
    • insert-segment-to-db tool
    • pull-deps tool
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Druid AWS RDS Module
  • Kubernetes
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Prometheus Emitter
  • kubernetes
  • Cardinality/HyperUnique aggregators
  • Select
  • Firehose (deprecated)
  • Native batch (simple)
  • Realtime Process
Edit

Tutorial: Deleting data

This tutorial demonstrates how to delete existing data.

For this tutorial, we'll assume you've already downloaded Apache Druid as described in the single-machine quickstart and have it running on your local machine.

Load initial data

In this tutorial, we will use the Wikipedia edits data, with an indexing spec that creates hourly segments. This spec is located at quickstart/tutorial/deletion-index.json, and it creates a datasource called deletion-tutorial.

Let's load this initial data:

bin/post-index-task --file quickstart/tutorial/deletion-index.json --url http://localhost:8081

When the load finishes, open http://localhost:8888/unified-console.md#datasources in a browser.

How to permanently delete data

Permanent deletion of a Druid segment has two steps:

  1. The segment must first be marked as "unused". This occurs when a user manually disables a segment through the Coordinator API.
  2. After segments have been marked as "unused", a Kill Task will delete any "unused" segments from Druid's metadata store as well as deep storage.

Let's drop some segments now, by using the coordinator API to drop data by interval and segmentIds.

Disable segments by interval

Let's disable segments in a specified interval. This will mark all segments in the interval as "unused", but not remove them from deep storage. Let's disable segments in interval 2015-09-12T18:00:00.000Z/2015-09-12T20:00:00.000Z i.e. between hour 18 and 20.

curl -X 'POST' -H 'Content-Type:application/json' -d '{ "interval" : "2015-09-12T18:00:00.000Z/2015-09-12T20:00:00.000Z" }' http://localhost:8081/druid/coordinator/v1/datasources/deletion-tutorial/markUnused

After that command completes, you should see that the segment for hour 18 and 19 have been disabled:

Segments 2

Note that the hour 18 and 19 segments are still present in deep storage:

$ ls -l1 var/druid/segments/deletion-tutorial/
2015-09-12T00:00:00.000Z_2015-09-12T01:00:00.000Z
2015-09-12T01:00:00.000Z_2015-09-12T02:00:00.000Z
2015-09-12T02:00:00.000Z_2015-09-12T03:00:00.000Z
2015-09-12T03:00:00.000Z_2015-09-12T04:00:00.000Z
2015-09-12T04:00:00.000Z_2015-09-12T05:00:00.000Z
2015-09-12T05:00:00.000Z_2015-09-12T06:00:00.000Z
2015-09-12T06:00:00.000Z_2015-09-12T07:00:00.000Z
2015-09-12T07:00:00.000Z_2015-09-12T08:00:00.000Z
2015-09-12T08:00:00.000Z_2015-09-12T09:00:00.000Z
2015-09-12T09:00:00.000Z_2015-09-12T10:00:00.000Z
2015-09-12T10:00:00.000Z_2015-09-12T11:00:00.000Z
2015-09-12T11:00:00.000Z_2015-09-12T12:00:00.000Z
2015-09-12T12:00:00.000Z_2015-09-12T13:00:00.000Z
2015-09-12T13:00:00.000Z_2015-09-12T14:00:00.000Z
2015-09-12T14:00:00.000Z_2015-09-12T15:00:00.000Z
2015-09-12T15:00:00.000Z_2015-09-12T16:00:00.000Z
2015-09-12T16:00:00.000Z_2015-09-12T17:00:00.000Z
2015-09-12T17:00:00.000Z_2015-09-12T18:00:00.000Z
2015-09-12T18:00:00.000Z_2015-09-12T19:00:00.000Z
2015-09-12T19:00:00.000Z_2015-09-12T20:00:00.000Z
2015-09-12T20:00:00.000Z_2015-09-12T21:00:00.000Z
2015-09-12T21:00:00.000Z_2015-09-12T22:00:00.000Z
2015-09-12T22:00:00.000Z_2015-09-12T23:00:00.000Z
2015-09-12T23:00:00.000Z_2015-09-13T00:00:00.000Z

Disable segments by segment IDs

Let's disable some segments by their segmentID. This will again mark the segments as "unused", but not remove them from deep storage. You can see the full segmentID for a segment from UI as explained below.

In the segments view, click the arrow on the left side of one of the remaining segments to expand the segment entry:

Segments

The top of the info box shows the full segment ID, e.g. deletion-tutorial_2015-09-12T14:00:00.000Z_2015-09-12T15:00:00.000Z_2019-02-28T01:11:51.606Z for the segment of hour 14.

Let's disable the hour 13 and 14 segments by sending a POST request to the Coordinator with this payload

{
  "segmentIds":
  [
    "deletion-tutorial_2015-09-12T13:00:00.000Z_2015-09-12T14:00:00.000Z_2019-05-01T17:38:46.961Z",
    "deletion-tutorial_2015-09-12T14:00:00.000Z_2015-09-12T15:00:00.000Z_2019-05-01T17:38:46.961Z"
  ]
}

This payload json has been provided at quickstart/tutorial/deletion-disable-segments.json. Submit the POST request to Coordinator like this:

curl -X 'POST' -H 'Content-Type:application/json' -d @quickstart/tutorial/deletion-disable-segments.json http://localhost:8081/druid/coordinator/v1/datasources/deletion-tutorial/markUnused

After that command completes, you should see that the segments for hour 13 and 14 have been disabled:

Segments 3

Note that the hour 13 and 14 segments are still in deep storage:

$ ls -l1 var/druid/segments/deletion-tutorial/
2015-09-12T00:00:00.000Z_2015-09-12T01:00:00.000Z
2015-09-12T01:00:00.000Z_2015-09-12T02:00:00.000Z
2015-09-12T02:00:00.000Z_2015-09-12T03:00:00.000Z
2015-09-12T03:00:00.000Z_2015-09-12T04:00:00.000Z
2015-09-12T04:00:00.000Z_2015-09-12T05:00:00.000Z
2015-09-12T05:00:00.000Z_2015-09-12T06:00:00.000Z
2015-09-12T06:00:00.000Z_2015-09-12T07:00:00.000Z
2015-09-12T07:00:00.000Z_2015-09-12T08:00:00.000Z
2015-09-12T08:00:00.000Z_2015-09-12T09:00:00.000Z
2015-09-12T09:00:00.000Z_2015-09-12T10:00:00.000Z
2015-09-12T10:00:00.000Z_2015-09-12T11:00:00.000Z
2015-09-12T11:00:00.000Z_2015-09-12T12:00:00.000Z
2015-09-12T12:00:00.000Z_2015-09-12T13:00:00.000Z
2015-09-12T13:00:00.000Z_2015-09-12T14:00:00.000Z
2015-09-12T14:00:00.000Z_2015-09-12T15:00:00.000Z
2015-09-12T15:00:00.000Z_2015-09-12T16:00:00.000Z
2015-09-12T16:00:00.000Z_2015-09-12T17:00:00.000Z
2015-09-12T17:00:00.000Z_2015-09-12T18:00:00.000Z
2015-09-12T18:00:00.000Z_2015-09-12T19:00:00.000Z
2015-09-12T19:00:00.000Z_2015-09-12T20:00:00.000Z
2015-09-12T20:00:00.000Z_2015-09-12T21:00:00.000Z
2015-09-12T21:00:00.000Z_2015-09-12T22:00:00.000Z
2015-09-12T22:00:00.000Z_2015-09-12T23:00:00.000Z
2015-09-12T23:00:00.000Z_2015-09-13T00:00:00.000Z

Run a kill task

Now that we have disabled some segments, we can submit a Kill Task, which will delete the disabled segments from metadata and deep storage.

A Kill Task spec has been provided at quickstart/tutorial/deletion-kill.json. Submit this task to the Overlord with the following command:

curl -X 'POST' -H 'Content-Type:application/json' -d @quickstart/tutorial/deletion-kill.json http://localhost:8081/druid/indexer/v1/task

After this task completes, you can see that the disabled segments have now been removed from deep storage:

$ ls -l1 var/druid/segments/deletion-tutorial/
2015-09-12T12:00:00.000Z_2015-09-12T13:00:00.000Z
2015-09-12T15:00:00.000Z_2015-09-12T16:00:00.000Z
2015-09-12T16:00:00.000Z_2015-09-12T17:00:00.000Z
2015-09-12T17:00:00.000Z_2015-09-12T18:00:00.000Z
2015-09-12T20:00:00.000Z_2015-09-12T21:00:00.000Z
2015-09-12T21:00:00.000Z_2015-09-12T22:00:00.000Z
2015-09-12T22:00:00.000Z_2015-09-12T23:00:00.000Z
2015-09-12T23:00:00.000Z_2015-09-13T00:00:00.000Z
โ† Compacting segmentsWriting an ingestion spec โ†’
  • Load initial data
  • How to permanently delete data
  • Disable segments by interval
  • Disable segments by segment IDs
  • Run a kill task

Technologyโ€‚ยทโ€‚Use Casesโ€‚ยทโ€‚Powered by Druidโ€‚ยทโ€‚Docsโ€‚ยทโ€‚Communityโ€‚ยทโ€‚Downloadโ€‚ยทโ€‚FAQ

โ€‚ยทโ€‚โ€‚ยทโ€‚โ€‚ยทโ€‚
Copyright ยฉ 2022 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.