Apache Druid
  • Technology
  • Use Cases
  • Powered By
  • Docs
  • Community
  • Apache
  • Download

›Tutorials

Getting started

  • Introduction to Apache Druid
  • Quickstart (local)
  • Single server deployment
  • Clustered deployment

Tutorials

  • Load files natively
  • Load files using SQL 🆕
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Theta sketches
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Tutorial: Run with Docker
  • Kerberized HDFS deep storage
  • Convert ingestion spec to SQL
  • Jupyter Notebook tutorials

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Data model
  • Data rollup
  • Partitioning
  • Ingestion spec
  • Schema design tips
  • Stream ingestion

    • Apache Kafka ingestion
    • Apache Kafka supervisor
    • Apache Kafka operations
    • Amazon Kinesis

    Batch ingestion

    • Native batch
    • Native batch: input sources
    • Migrate from firehose
    • Hadoop-based

    SQL-based ingestion 🆕

    • Overview
    • Key concepts
    • API
    • Security
    • Examples
    • Reference
    • Known issues
  • Task reference
  • Troubleshooting FAQ

Data management

  • Overview
  • Data updates
  • Data deletion
  • Schema changes
  • Compaction
  • Automatic compaction

Querying

    Druid SQL

    • Overview and syntax
    • SQL data types
    • Operators
    • Scalar functions
    • Aggregation functions
    • Multi-value string functions
    • JSON functions
    • All functions
    • Druid SQL API
    • JDBC driver API
    • SQL query context
    • SQL metadata tables
    • SQL query translation
  • Native queries
  • Query execution
  • Troubleshooting
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Nested columns
    • Multitenancy
    • Query caching
    • Using query caching
    • Query context

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Java runtime
  • Security

    • Security overview
    • User authentication and authorization
    • LDAP auth
    • Password providers
    • Dynamic Config Providers
    • TLS support

    Performance tuning

    • Basic cluster tuning
    • Segment size optimization
    • Mixed workloads
    • HTTP compression
    • Automated metadata cleanup

    Monitoring

    • Request logging
    • Metrics
    • Alerts
  • API reference
  • High availability
  • Rolling updates
  • Using rules to drop and retain data
  • Working with different versions of Apache Hadoop
  • Misc

    • dump-segment tool
    • reset-cluster tool
    • insert-segment-to-db tool
    • pull-deps tool
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Druid AWS RDS Module
  • Kubernetes
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Prometheus Emitter
  • kubernetes
  • Cardinality/HyperUnique aggregators
  • Select
  • Firehose (deprecated)
  • Native batch (simple)
  • Realtime Process
Edit

Tutorial: Loading a file

This tutorial demonstrates how to load data into Apache Druid from a file using Apache Druid's native batch ingestion feature.

You initiate data loading in Druid by submitting an ingestion task spec to the Druid Overlord. You can write ingestion specs by hand or using the data loader built into the web console.

For production environments, it's likely that you'll want to automate data ingestion. This tutorial starts by showing you how to submit an ingestion spec directly in the web console, and then introduces ways to ingest batch data that lend themselves to automation—from the command line and from a script.

Loading data with a spec (via console)

The Druid package includes the following sample native batch ingestion task spec at quickstart/tutorial/wikipedia-index.json, shown here for convenience, which has been configured to read the quickstart/tutorial/wikiticker-2015-09-12-sampled.json.gz input file:

{
  "type" : "index_parallel",
  "spec" : {
    "dataSchema" : {
      "dataSource" : "wikipedia",
      "dimensionsSpec" : {
        "dimensions" : [
          "channel",
          "cityName",
          "comment",
          "countryIsoCode",
          "countryName",
          "isAnonymous",
          "isMinor",
          "isNew",
          "isRobot",
          "isUnpatrolled",
          "metroCode",
          "namespace",
          "page",
          "regionIsoCode",
          "regionName",
          "user",
          { "name": "added", "type": "long" },
          { "name": "deleted", "type": "long" },
          { "name": "delta", "type": "long" }
        ]
      },
      "timestampSpec": {
        "column": "time",
        "format": "iso"
      },
      "metricsSpec" : [],
      "granularitySpec" : {
        "type" : "uniform",
        "segmentGranularity" : "day",
        "queryGranularity" : "none",
        "intervals" : ["2015-09-12/2015-09-13"],
        "rollup" : false
      }
    },
    "ioConfig" : {
      "type" : "index_parallel",
      "inputSource" : {
        "type" : "local",
        "baseDir" : "quickstart/tutorial/",
        "filter" : "wikiticker-2015-09-12-sampled.json.gz"
      },
      "inputFormat" :  {
        "type": "json"
      },
      "appendToExisting" : false
    },
    "tuningConfig" : {
      "type" : "index_parallel",
      "partitionsSpec": {
        "type": "dynamic"
      },
      "maxRowsInMemory" : 25000
    }
  }
}

This spec creates a datasource named "wikipedia".

From the Ingestion view, click the ellipses next to Tasks and choose Submit JSON task.

Tasks view add task

This brings up the spec submission dialog where you can paste the spec above.

Query view

Once the spec is submitted, wait a few moments for the data to load, after which you can query it.

Loading data with a spec (via command line)

For convenience, the Druid package includes a batch ingestion helper script at bin/post-index-task.

This script will POST an ingestion task to the Druid Overlord and poll Druid until the data is available for querying.

Run the following command from Druid package root:

bin/post-index-task --file quickstart/tutorial/wikipedia-index.json --url http://localhost:8081

You should see output like the following:

Beginning indexing data for wikipedia
Task started: index_wikipedia_2018-07-27T06:37:44.323Z
Task log:     http://localhost:8081/druid/indexer/v1/task/index_wikipedia_2018-07-27T06:37:44.323Z/log
Task status:  http://localhost:8081/druid/indexer/v1/task/index_wikipedia_2018-07-27T06:37:44.323Z/status
Task index_wikipedia_2018-07-27T06:37:44.323Z still running...
Task index_wikipedia_2018-07-27T06:37:44.323Z still running...
Task finished with status: SUCCESS
Completed indexing data for wikipedia. Now loading indexed data onto the cluster...
wikipedia loading complete! You may now query your data

Once the spec is submitted, you can follow the same instructions as above to wait for the data to load and then query it.

Loading data without the script

Let's briefly discuss how we would've submitted the ingestion task without using the script. You do not need to run these commands.

To submit the task, POST it to Druid in a new terminal window from the apache-druid-25.0.0 directory:

curl -X 'POST' -H 'Content-Type:application/json' -d @quickstart/tutorial/wikipedia-index.json http://localhost:8081/druid/indexer/v1/task

Which will print the ID of the task if the submission was successful:

{"task":"index_wikipedia_2018-06-09T21:30:32.802Z"}

You can monitor the status of this task from the console as outlined above.

Querying your data

Once the data is loaded, please follow the query tutorial to run some example queries on the newly loaded data.

Cleanup

If you wish to go through any of the other ingestion tutorials, you will need to shut down the cluster and reset the cluster state by removing the contents of the var directory under the druid package, as the other tutorials will write to the same "wikipedia" datasource.

Further reading

For more information on loading batch data, please see the native batch ingestion documentation.

← Clustered deploymentLoad files using SQL 🆕 →
  • Loading data with a spec (via console)
  • Loading data with a spec (via command line)
  • Loading data without the script
  • Querying your data
  • Cleanup
  • Further reading

Technology · Use Cases · Powered by Druid · Docs · Community · Download · FAQ

 ·  ·  · 
Copyright © 2022 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.