Apache Druid
  • Technology
  • Use Cases
  • Powered By
  • Docs
  • Community
  • Apache
  • Download

โ€บTutorials

Getting started

  • Introduction to Apache Druid
  • Quickstart (local)
  • Single server deployment
  • Clustered deployment

Tutorials

  • Load files natively
  • Load files using SQL ๐Ÿ†•
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Theta sketches
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Tutorial: Run with Docker
  • Kerberized HDFS deep storage
  • Convert ingestion spec to SQL
  • Jupyter Notebook tutorials

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Data model
  • Data rollup
  • Partitioning
  • Ingestion spec
  • Schema design tips
  • Stream ingestion

    • Apache Kafka ingestion
    • Apache Kafka supervisor
    • Apache Kafka operations
    • Amazon Kinesis

    Batch ingestion

    • Native batch
    • Native batch: input sources
    • Migrate from firehose
    • Hadoop-based

    SQL-based ingestion ๐Ÿ†•

    • Overview
    • Key concepts
    • API
    • Security
    • Examples
    • Reference
    • Known issues
  • Task reference
  • Troubleshooting FAQ

Data management

  • Overview
  • Data updates
  • Data deletion
  • Schema changes
  • Compaction
  • Automatic compaction

Querying

    Druid SQL

    • Overview and syntax
    • SQL data types
    • Operators
    • Scalar functions
    • Aggregation functions
    • Multi-value string functions
    • JSON functions
    • All functions
    • Druid SQL API
    • JDBC driver API
    • SQL query context
    • SQL metadata tables
    • SQL query translation
  • Native queries
  • Query execution
  • Troubleshooting
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Nested columns
    • Multitenancy
    • Query caching
    • Using query caching
    • Query context

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Java runtime
  • Security

    • Security overview
    • User authentication and authorization
    • LDAP auth
    • Password providers
    • Dynamic Config Providers
    • TLS support

    Performance tuning

    • Basic cluster tuning
    • Segment size optimization
    • Mixed workloads
    • HTTP compression
    • Automated metadata cleanup

    Monitoring

    • Request logging
    • Metrics
    • Alerts
  • API reference
  • High availability
  • Rolling updates
  • Using rules to drop and retain data
  • Working with different versions of Apache Hadoop
  • Misc

    • dump-segment tool
    • reset-cluster tool
    • insert-segment-to-db tool
    • pull-deps tool
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Druid AWS RDS Module
  • Kubernetes
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Prometheus Emitter
  • kubernetes
  • Cardinality/HyperUnique aggregators
  • Select
  • Firehose (deprecated)
  • Native batch (simple)
  • Realtime Process
Edit

Tutorial: Load batch data using Apache Hadoop

This tutorial shows you how to load data files into Apache Druid using a remote Hadoop cluster.

For this tutorial, we'll assume that you've already completed the previous batch ingestion tutorial using Druid's native batch ingestion system and are using the automatic single-machine configuration as described in the quickstart.

Install Docker

This tutorial requires Docker to be installed on the tutorial machine.

Once the Docker install is complete, please proceed to the next steps in the tutorial.

Build the Hadoop docker image

For this tutorial, we've provided a Dockerfile for a Hadoop 2.8.5 cluster, which we'll use to run the batch indexing task.

This Dockerfile and related files are located at quickstart/tutorial/hadoop/docker.

From the apache-druid-25.0.0 package root, run the following commands to build a Docker image named "druid-hadoop-demo" with version tag "2.8.5":

cd quickstart/tutorial/hadoop/docker
docker build -t druid-hadoop-demo:2.8.5 .

This will start building the Hadoop image. Once the image build is done, you should see the message Successfully tagged druid-hadoop-demo:2.8.5 printed to the console.

Setup the Hadoop docker cluster

Create temporary shared directory

We'll need a shared folder between the host and the Hadoop container for transferring some files.

Let's create some folders under /tmp, we will use these later when starting the Hadoop container:

mkdir -p /tmp/shared
mkdir -p /tmp/shared/hadoop_xml

Configure /etc/hosts

On the host machine, add the following entry to /etc/hosts:

127.0.0.1 druid-hadoop-demo

Start the Hadoop container

Once the /tmp/shared folder has been created and the etc/hosts entry has been added, run the following command to start the Hadoop container.

docker run -it  -h druid-hadoop-demo --name druid-hadoop-demo -p 2049:2049 -p 2122:2122 -p 8020:8020 -p 8021:8021 -p 8030:8030 -p 8031:8031 -p 8032:8032 -p 8033:8033 -p 8040:8040 -p 8042:8042 -p 8088:8088 -p 8443:8443 -p 9000:9000 -p 10020:10020 -p 19888:19888 -p 34455:34455 -p 49707:49707 -p 50010:50010 -p 50020:50020 -p 50030:50030 -p 50060:50060 -p 50070:50070 -p 50075:50075 -p 50090:50090 -p 51111:51111 -v /tmp/shared:/shared druid-hadoop-demo:2.8.5 /etc/bootstrap.sh -bash

Once the container is started, your terminal will attach to a bash shell running inside the container:

Starting sshd:                                             [  OK  ]
18/07/26 17:27:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting namenodes on [druid-hadoop-demo]
druid-hadoop-demo: starting namenode, logging to /usr/local/hadoop/logs/hadoop-root-namenode-druid-hadoop-demo.out
localhost: starting datanode, logging to /usr/local/hadoop/logs/hadoop-root-datanode-druid-hadoop-demo.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to /usr/local/hadoop/logs/hadoop-root-secondarynamenode-druid-hadoop-demo.out
18/07/26 17:27:31 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
starting yarn daemons
starting resourcemanager, logging to /usr/local/hadoop/logs/yarn--resourcemanager-druid-hadoop-demo.out
localhost: starting nodemanager, logging to /usr/local/hadoop/logs/yarn-root-nodemanager-druid-hadoop-demo.out
starting historyserver, logging to /usr/local/hadoop/logs/mapred--historyserver-druid-hadoop-demo.out
bash-4.1#

The Unable to load native-hadoop library for your platform... using builtin-java classes where applicable warning messages can be safely ignored.

Accessing the Hadoop container shell

To open another shell to the Hadoop container, run the following command:

docker exec -it druid-hadoop-demo bash

Copy input data to the Hadoop container

From the apache-druid-25.0.0 package root on the host, copy the quickstart/tutorial/wikiticker-2015-09-12-sampled.json.gz sample data to the shared folder:

cp quickstart/tutorial/wikiticker-2015-09-12-sampled.json.gz /tmp/shared/wikiticker-2015-09-12-sampled.json.gz

Setup HDFS directories

In the Hadoop container's shell, run the following commands to setup the HDFS directories needed by this tutorial and copy the input data to HDFS.

cd /usr/local/hadoop/bin
./hdfs dfs -mkdir /druid
./hdfs dfs -mkdir /druid/segments
./hdfs dfs -mkdir /quickstart
./hdfs dfs -chmod 777 /druid
./hdfs dfs -chmod 777 /druid/segments
./hdfs dfs -chmod 777 /quickstart
./hdfs dfs -chmod -R 777 /tmp
./hdfs dfs -chmod -R 777 /user
./hdfs dfs -put /shared/wikiticker-2015-09-12-sampled.json.gz /quickstart/wikiticker-2015-09-12-sampled.json.gz

If you encounter namenode errors when running this command, the Hadoop container may not be finished initializing. When this occurs, wait a couple of minutes and retry the commands.

Configure Druid to use Hadoop

Some additional steps are needed to configure the Druid cluster for Hadoop batch indexing.

Copy Hadoop configuration to Druid classpath

From the Hadoop container's shell, run the following command to copy the Hadoop .xml configuration files to the shared folder:

cp /usr/local/hadoop/etc/hadoop/*.xml /shared/hadoop_xml

From the host machine, run the following, where {PATH_TO_DRUID} is replaced by the path to the Druid package.

mkdir -p {PATH_TO_DRUID}/conf/druid/single-server/micro-quickstart/_common/hadoop-xml
cp /tmp/shared/hadoop_xml/*.xml {PATH_TO_DRUID}/conf/druid/single-server/micro-quickstart/_common/hadoop-xml/

Update Druid segment and log storage

In your favorite text editor, open conf/druid/auto/_common/common.runtime.properties, and make the following edits:

Disable local deep storage and enable HDFS deep storage

#
# Deep storage
#

# For local disk (only viable in a cluster if this is a network mount):
#druid.storage.type=local
#druid.storage.storageDirectory=var/druid/segments

# For HDFS:
druid.storage.type=hdfs
druid.storage.storageDirectory=/druid/segments

Disable local log storage and enable HDFS log storage

#
# Indexing service logs
#

# For local disk (only viable in a cluster if this is a network mount):
#druid.indexer.logs.type=file
#druid.indexer.logs.directory=var/druid/indexing-logs

# For HDFS:
druid.indexer.logs.type=hdfs
druid.indexer.logs.directory=/druid/indexing-logs

Restart Druid cluster

Once the Hadoop .xml files have been copied to the Druid cluster and the segment/log storage configuration has been updated to use HDFS, the Druid cluster needs to be restarted for the new configurations to take effect.

If the cluster is still running, CTRL-C to terminate the bin/start-druid script, and re-run it to bring the Druid services back up.

Load batch data

We've included a sample of Wikipedia edits from September 12, 2015 to get you started.

To load this data into Druid, you can submit an ingestion task pointing to the file. We've included a task that loads the wikiticker-2015-09-12-sampled.json.gz file included in the archive.

Let's submit the wikipedia-index-hadoop.json task:

bin/post-index-task --file quickstart/tutorial/wikipedia-index-hadoop.json --url http://localhost:8081

Querying your data

After the data load is complete, please follow the query tutorial to run some example queries on the newly loaded data.

Cleanup

This tutorial is only meant to be used together with the query tutorial.

If you wish to go through any of the other tutorials, you will need to:

  • Shut down the cluster and reset the cluster state by removing the contents of the var directory under the druid package.
  • Revert the deep storage and task storage config back to local types in conf/druid/auto/_common/common.runtime.properties
  • Restart the cluster

This is necessary because the other ingestion tutorials will write to the same "wikipedia" datasource, and later tutorials expect the cluster to use local deep storage.

Example reverted config:

#
# Deep storage
#

# For local disk (only viable in a cluster if this is a network mount):
druid.storage.type=local
druid.storage.storageDirectory=var/druid/segments

# For HDFS:
#druid.storage.type=hdfs
#druid.storage.storageDirectory=/druid/segments

#
# Indexing service logs
#

# For local disk (only viable in a cluster if this is a network mount):
druid.indexer.logs.type=file
druid.indexer.logs.directory=var/druid/indexing-logs

# For HDFS:
#druid.indexer.logs.type=hdfs
#druid.indexer.logs.directory=/druid/indexing-logs

Further reading

For more information on loading batch data with Hadoop, please see the Hadoop batch ingestion documentation.

โ† Load from Apache KafkaQuerying data โ†’
  • Install Docker
  • Build the Hadoop docker image
  • Setup the Hadoop docker cluster
    • Create temporary shared directory
    • Configure /etc/hosts
    • Start the Hadoop container
    • Copy input data to the Hadoop container
    • Setup HDFS directories
  • Configure Druid to use Hadoop
    • Copy Hadoop configuration to Druid classpath
    • Update Druid segment and log storage
    • Restart Druid cluster
  • Load batch data
  • Querying your data
  • Cleanup
  • Further reading

Technologyโ€‚ยทโ€‚Use Casesโ€‚ยทโ€‚Powered by Druidโ€‚ยทโ€‚Docsโ€‚ยทโ€‚Communityโ€‚ยทโ€‚Downloadโ€‚ยทโ€‚FAQ

โ€‚ยทโ€‚โ€‚ยทโ€‚โ€‚ยทโ€‚
Copyright ยฉ 2022 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.