Apache Druid
  • Technology
  • Use Cases
  • Powered By
  • Docs
  • Community
  • Apache
  • Download

โ€บQuerying

Getting started

  • Introduction to Apache Druid
  • Quickstart (local)
  • Single server deployment
  • Clustered deployment

Tutorials

  • Load files natively
  • Load files using SQL ๐Ÿ†•
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Theta sketches
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Tutorial: Run with Docker
  • Kerberized HDFS deep storage
  • Convert ingestion spec to SQL
  • Jupyter Notebook tutorials

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Data model
  • Data rollup
  • Partitioning
  • Ingestion spec
  • Schema design tips
  • Stream ingestion

    • Apache Kafka ingestion
    • Apache Kafka supervisor
    • Apache Kafka operations
    • Amazon Kinesis

    Batch ingestion

    • Native batch
    • Native batch: input sources
    • Migrate from firehose
    • Hadoop-based

    SQL-based ingestion ๐Ÿ†•

    • Overview
    • Key concepts
    • API
    • Security
    • Examples
    • Reference
    • Known issues
  • Task reference
  • Troubleshooting FAQ

Data management

  • Overview
  • Data updates
  • Data deletion
  • Schema changes
  • Compaction
  • Automatic compaction

Querying

    Druid SQL

    • Overview and syntax
    • SQL data types
    • Operators
    • Scalar functions
    • Aggregation functions
    • Multi-value string functions
    • JSON functions
    • All functions
    • Druid SQL API
    • JDBC driver API
    • SQL query context
    • SQL metadata tables
    • SQL query translation
  • Native queries
  • Query execution
  • Troubleshooting
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Nested columns
    • Multitenancy
    • Query caching
    • Using query caching
    • Query context

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Java runtime
  • Security

    • Security overview
    • User authentication and authorization
    • LDAP auth
    • Password providers
    • Dynamic Config Providers
    • TLS support

    Performance tuning

    • Basic cluster tuning
    • Segment size optimization
    • Mixed workloads
    • HTTP compression
    • Automated metadata cleanup

    Monitoring

    • Request logging
    • Metrics
    • Alerts
  • API reference
  • High availability
  • Rolling updates
  • Using rules to drop and retain data
  • Working with different versions of Apache Hadoop
  • Misc

    • dump-segment tool
    • reset-cluster tool
    • insert-segment-to-db tool
    • pull-deps tool
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Druid AWS RDS Module
  • Kubernetes
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Prometheus Emitter
  • kubernetes
  • Cardinality/HyperUnique aggregators
  • Select
  • Firehose (deprecated)
  • Native batch (simple)
  • Realtime Process
Edit

Troubleshooting query execution in Druid

This topic describes issues that may affect query execution in Druid, how to identify those issues, and strategies to resolve them.

Query fails due to internal communication timeout

In Druid's query processing, when the Broker sends a query to the data servers, the data servers process the query and push their intermediate results back to the Broker. Because calls from the Broker to the data servers are synchronous, the Jetty server can time out in data servers in certain cases:

  1. The data servers don't push any results to the Broker before the maximum idle time.
  2. The data servers started to push data but paused for longer than the maximum idle time such as due to Broker backpressure.

When such timeout occurs, the server interrupts the connection between the Broker and data servers which causes the query to fail with a channel disconnection error. For example,

{
   "error": {
      "error": "Unknown exception",
      "errorMessage": "Query[6eee73a6-a95f-4bdc-821d-981e99e39242] url[https://localhost:8283/druid/v2/] failed with exception msg [Channel disconnected] (through reference chain: org.apache.druid.query.scan.ScanResultValue[\"segmentId\"])",
      "errorClass": "com.fasterxml.jackson.databind.JsonMappingException",
      "host": "localhost:8283"
   }
}

Channel disconnection occurs for various reasons. To verify that the error is due to web server timeout, search for the query ID in the Historical logs. The query ID in the example above is 6eee73a6-a95f-4bdc-821d-981e99e39242. The "host" field in the error message above indicates the IP address of the Historical in question. In the Historical logs, you will see a raised exception indicating Idle timeout expired:

2021-09-14T19:52:27,685 ERROR [qtp475526834-85[scan_[test_large_table]_6eee73a6-a95f-4bdc-821d-981e99e39242]] org.apache.druid.server.QueryResource - Unable to send query response. (java.io.IOException: java.util.concurrent.TimeoutException: Idle timeout expired: 300000/300000 ms)
2021-09-14T19:52:27,685 ERROR [qtp475526834-85] org.apache.druid.server.QueryLifecycle - Exception while processing queryId [6eee73a6-a95f-4bdc-821d-981e99e39242] (java.io.IOException: java.util.concurrent.TimeoutException: Idle timeout expired: 300000/300000 ms)
2021-09-14T19:52:27,686 WARN [qtp475526834-85] org.eclipse.jetty.server.HttpChannel - handleException /druid/v2/ java.io.IOException: java.util.concurrent.TimeoutException: Idle timeout expired: 300000/300000 ms

To mitigate query failure due to web server timeout:

  • Increase the max idle time for the web server. Set the max idle time in the druid.server.http.maxIdleTime property in the historical/runtime.properties file. You must restart the Druid cluster for this change to take effect. See Configuration reference for more information on configuring the server.
  • If the timeout occurs because the data servers have not pushed any results to the Broker, consider optimizing data server performance. Significant slowdown in the data servers may be a result of spilling too much data to disk in groupBy v2 queries, large IN filters in the query, or an under scaled cluster. Analyze your Druid query metrics to determine the bottleneck.
  • If the timeout is caused by Broker backpressure, consider optimizing Broker performance. Check whether the connection is fast enough between the Broker and deep storage.
โ† Query executionDatasources โ†’
  • Query fails due to internal communication timeout

Technologyโ€‚ยทโ€‚Use Casesโ€‚ยทโ€‚Powered by Druidโ€‚ยทโ€‚Docsโ€‚ยทโ€‚Communityโ€‚ยทโ€‚Downloadโ€‚ยทโ€‚FAQ

โ€‚ยทโ€‚โ€‚ยทโ€‚โ€‚ยทโ€‚
Copyright ยฉ 2022 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.