Apache Druid
  • Technology
  • Use Cases
  • Powered By
  • Docs
  • Community
  • Apache
  • Download

โ€บDruid SQL

Getting started

  • Introduction to Apache Druid
  • Quickstart (local)
  • Single server deployment
  • Clustered deployment

Tutorials

  • Load files natively
  • Load files using SQL ๐Ÿ†•
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Theta sketches
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Tutorial: Run with Docker
  • Kerberized HDFS deep storage
  • Convert ingestion spec to SQL
  • Jupyter Notebook tutorials

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Data model
  • Data rollup
  • Partitioning
  • Ingestion spec
  • Schema design tips
  • Stream ingestion

    • Apache Kafka ingestion
    • Apache Kafka supervisor
    • Apache Kafka operations
    • Amazon Kinesis

    Batch ingestion

    • Native batch
    • Native batch: input sources
    • Migrate from firehose
    • Hadoop-based

    SQL-based ingestion ๐Ÿ†•

    • Overview
    • Key concepts
    • API
    • Security
    • Examples
    • Reference
    • Known issues
  • Task reference
  • Troubleshooting FAQ

Data management

  • Overview
  • Data updates
  • Data deletion
  • Schema changes
  • Compaction
  • Automatic compaction

Querying

    Druid SQL

    • Overview and syntax
    • SQL data types
    • Operators
    • Scalar functions
    • Aggregation functions
    • Multi-value string functions
    • JSON functions
    • All functions
    • Druid SQL API
    • JDBC driver API
    • SQL query context
    • SQL metadata tables
    • SQL query translation
  • Native queries
  • Query execution
  • Troubleshooting
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Nested columns
    • Multitenancy
    • Query caching
    • Using query caching
    • Query context

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Java runtime
  • Security

    • Security overview
    • User authentication and authorization
    • LDAP auth
    • Password providers
    • Dynamic Config Providers
    • TLS support

    Performance tuning

    • Basic cluster tuning
    • Segment size optimization
    • Mixed workloads
    • HTTP compression
    • Automated metadata cleanup

    Monitoring

    • Request logging
    • Metrics
    • Alerts
  • API reference
  • High availability
  • Rolling updates
  • Using rules to drop and retain data
  • Working with different versions of Apache Hadoop
  • Misc

    • dump-segment tool
    • reset-cluster tool
    • insert-segment-to-db tool
    • pull-deps tool
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Druid AWS RDS Module
  • Kubernetes
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Prometheus Emitter
  • kubernetes
  • Cardinality/HyperUnique aggregators
  • Select
  • Firehose (deprecated)
  • Native batch (simple)
  • Realtime Process
Edit

SQL query context

Apache Druid supports two query languages: Druid SQL and native queries. This document describes the SQL language.

Druid supports query context parameters which affect SQL query planning. See Query context for general query context parameters for all query types.

SQL query context parameters

Configure Druid SQL query planning using the parameters in the table below.

ParameterDescriptionDefault value
sqlQueryIdUnique identifier given to this SQL query. For HTTP client, it will be returned in X-Druid-SQL-Query-Id header.

To specify a unique identifier for SQL query, use sqlQueryId instead of queryId. Setting queryId for a SQL request has no effect. All native queries underlying SQL use an auto-generated queryId.
auto-generated
sqlTimeZoneSets the time zone for this connection, which will affect how time functions and timestamp literals behave. Should be a time zone name like "America/Los_Angeles" or offset like "-08:00".druid.sql.planner.sqlTimeZone on the Broker (default: UTC)
sqlStringifyArraysWhen set to true, result columns which return array values will be serialized into a JSON string in the response instead of as an arraytrue, except for JDBC connections, where it is always false
useApproximateCountDistinctWhether to use an approximate cardinality algorithm for COUNT(DISTINCT foo).druid.sql.planner.useApproximateCountDistinct on the Broker (default: true)
useGroupingSetForExactDistinctWhether to use grouping sets to execute queries with multiple exact distinct aggregations.druid.sql.planner.useGroupingSetForExactDistinct on the Broker (default: false)
useApproximateTopNWhether to use approximate TopN queries when a SQL query could be expressed as such. If false, exact GroupBy queries will be used instead.druid.sql.planner.useApproximateTopN on the Broker (default: true)
enableTimeBoundaryPlanningIf true, SQL queries will get converted to TimeBoundary queries wherever possible. TimeBoundary queries are very efficient for min-max calculation on __time column in a datasourcedruid.query.default.context.enableTimeBoundaryPlanning on the Broker (default: false)
useNativeQueryExplainIf true, EXPLAIN PLAN FOR will return the explain plan as a JSON representation of equivalent native query(s), else it will return the original version of explain plan generated by Calcite.

This property is provided for backwards compatibility. It is not recommended to use this parameter unless you were depending on the older behavior.
druid.sql.planner.useNativeQueryExplain on the Broker (default: true)
sqlFinalizeOuterSketchesIf false (default behavior in Druid 25.0.0 and later), DS_HLL, DS_THETA, and DS_QUANTILES_SKETCH return sketches in query results, as documented. If true (default behavior in Druid 24.0.1 and earlier), sketches from these functions are finalized when they appear in query results.

This property is provided for backwards compatibility with behavior in Druid 24.0.1 and earlier. It is not recommended to use this parameter unless you were depending on the older behavior. Instead, use a function that does not return a sketch, such as APPROX_COUNT_DISTINCT_DS_HLL, APPROX_COUNT_DISTINCT_DS_THETA, APPROX_QUANTILE_DS, DS_THETA_ESTIMATE, or DS_GET_QUANTILE.
druid.query.default.context.sqlFinalizeOuterSketches on the Broker (default: false)

Setting the query context

The query context parameters can be specified as a "context" object in the JSON API or as a JDBC connection properties object. See examples for each option below.

Example using JSON API

{
  "query" : "SELECT COUNT(*) FROM data_source WHERE foo = 'bar' AND __time > TIMESTAMP '2000-01-01 00:00:00'",
  "context" : {
    "sqlTimeZone" : "America/Los_Angeles"
  }
}

Example using JDBC

String url = "jdbc:avatica:remote:url=http://localhost:8082/druid/v2/sql/avatica/";

// Set any query context parameters you need here.
Properties connectionProperties = new Properties();
connectionProperties.setProperty("sqlTimeZone", "America/Los_Angeles");
connectionProperties.setProperty("useCache", "false");

try (Connection connection = DriverManager.getConnection(url, connectionProperties)) {
  // create and execute statements, process result sets, etc
}
โ† JDBC driver APISQL metadata tables โ†’
  • SQL query context parameters
  • Setting the query context
    • Example using JSON API
    • Example using JDBC

Technologyโ€‚ยทโ€‚Use Casesโ€‚ยทโ€‚Powered by Druidโ€‚ยทโ€‚Docsโ€‚ยทโ€‚Communityโ€‚ยทโ€‚Downloadโ€‚ยทโ€‚FAQ

โ€‚ยทโ€‚โ€‚ยทโ€‚โ€‚ยทโ€‚
Copyright ยฉ 2022 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.