Apache Druid
  • Technology
  • Use Cases
  • Powered By
  • Docs
  • Community
  • Apache
  • Download

›Native query components

Getting started

  • Introduction to Apache Druid
  • Quickstart
  • Docker
  • Single server deployment
  • Clustered deployment

Tutorials

  • Loading files natively
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Kerberized HDFS deep storage

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Data model
  • Data rollup
  • Partitioning
  • Ingestion spec
  • Schema design tips
  • Data management
  • Compaction
  • Stream ingestion

    • Apache Kafka
    • Amazon Kinesis

    Batch ingestion

    • Native batch
    • Hadoop-based
  • Task reference
  • Troubleshooting FAQ

Querying

  • Druid SQL
  • Native queries
  • Query execution
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Multitenancy
    • Query caching
    • Using query caching
    • Context parameters

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Getting started with Apache Druid
  • Security

    • Security overview
    • User authentication and authorization
    • LDAP auth
    • Password providers
    • Dynamic Config Providers
    • TLS support

    Performance tuning

    • Basic cluster tuning
    • Segment Size Optimization
    • HTTP compression
    • Automated metadata cleanup
  • API reference
  • High availability
  • Rolling updates
  • Retaining or automatically dropping data
  • Metrics
  • Alerts
  • Working with different versions of Apache Hadoop
  • Misc

    • Legacy Management UIs
    • dump-segment tool
    • reset-cluster tool
    • insert-segment-to-db tool
    • pull-deps tool
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Druid AWS RDS Module
  • Kubernetes
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Prometheus Emitter
  • kubernetes
  • Cardinality/HyperUnique aggregators
  • Select
  • Realtime Process
Edit

Sorting and limiting (groupBy)

Apache Druid supports two query languages: Druid SQL and native queries. This document describes the native language. For information about sorting in SQL, refer to the SQL documentation.

The limitSpec field provides the functionality to sort and limit the set of results from a groupBy query. If you group by a single dimension and are ordering by a single metric, we highly recommend using TopN Queries instead. The performance will be substantially better. Available options are:

DefaultLimitSpec

The default limit spec takes a limit and the list of columns to do an orderBy operation over. The grammar is:

{
    "type"    : "default",
    "limit"   : <optional integer>,
    "offset"  : <optional integer>,
    "columns" : [<optional list of OrderByColumnSpec>],
}

The "limit" parameter is the maximum number of rows to return.

The "offset" parameter tells Druid to skip this many rows when returning results. If both "limit" and "offset" are provided, then "offset" will be applied first, followed by "limit". For example, a spec with limit 100 and offset 10 will return 100 rows starting from row number 10. Internally, the query is executed by extending the limit by the offset and then discarding a number of rows equal to the offset. This means that raising the offset will increase resource usage by an amount similar to increasing the limit.

Together, "limit" and "offset" can be used to implement pagination. However, note that if the underlying datasource is modified in between page fetches in ways that affect overall query results, then the different pages will not necessarily align with each other.

OrderByColumnSpec

OrderByColumnSpecs indicate how to do order by operations. Each order-by condition can be a jsonString or a map of the following form:

{
    "dimension" : "<Any dimension or metric name>",
    "direction" : <"ascending"|"descending">,
    "dimensionOrder" : <"lexicographic"(default)|"alphanumeric"|"strlen"|"numeric">
}

If only the dimension is provided (as a JSON string), the default order-by is ascending with lexicographic sorting.

See Sorting Orders for more information on the sorting orders specified by "dimensionOrder".

← Having filters (groupBy)Sorting (topN) →

Technology · Use Cases · Powered by Druid · Docs · Community · Download · FAQ

 ·  ·  · 
Copyright © 2019 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.