Apache Druid
  • Technology
  • Use Cases
  • Powered By
  • Docs
  • Community
  • Apache
  • Download

โ€บBatch ingestion

Getting started

  • Introduction to Apache Druid
  • Quickstart (local)
  • Single server deployment
  • Clustered deployment

Tutorials

  • Load files natively
  • Load files using SQL ๐Ÿ†•
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Theta sketches
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Tutorial: Run with Docker
  • Kerberized HDFS deep storage
  • Convert ingestion spec to SQL
  • Jupyter Notebook tutorials

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Data model
  • Data rollup
  • Partitioning
  • Ingestion spec
  • Schema design tips
  • Stream ingestion

    • Apache Kafka ingestion
    • Apache Kafka supervisor
    • Apache Kafka operations
    • Amazon Kinesis

    Batch ingestion

    • Native batch
    • Native batch: input sources
    • Migrate from firehose
    • Hadoop-based

    SQL-based ingestion ๐Ÿ†•

    • Overview
    • Key concepts
    • API
    • Security
    • Examples
    • Reference
    • Known issues
  • Task reference
  • Troubleshooting FAQ

Data management

  • Overview
  • Data updates
  • Data deletion
  • Schema changes
  • Compaction
  • Automatic compaction

Querying

    Druid SQL

    • Overview and syntax
    • SQL data types
    • Operators
    • Scalar functions
    • Aggregation functions
    • Multi-value string functions
    • JSON functions
    • All functions
    • Druid SQL API
    • JDBC driver API
    • SQL query context
    • SQL metadata tables
    • SQL query translation
  • Native queries
  • Query execution
  • Troubleshooting
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Nested columns
    • Multitenancy
    • Query caching
    • Using query caching
    • Query context

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Java runtime
  • Security

    • Security overview
    • User authentication and authorization
    • LDAP auth
    • Password providers
    • Dynamic Config Providers
    • TLS support

    Performance tuning

    • Basic cluster tuning
    • Segment size optimization
    • Mixed workloads
    • HTTP compression
    • Automated metadata cleanup

    Monitoring

    • Request logging
    • Metrics
    • Alerts
  • API reference
  • High availability
  • Rolling updates
  • Using rules to drop and retain data
  • Working with different versions of Apache Hadoop
  • Misc

    • dump-segment tool
    • reset-cluster tool
    • insert-segment-to-db tool
    • pull-deps tool
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Druid AWS RDS Module
  • Kubernetes
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Prometheus Emitter
  • kubernetes
  • Cardinality/HyperUnique aggregators
  • Select
  • Firehose (deprecated)
  • Native batch (simple)
  • Realtime Process
Edit

Migrate from firehose to input source ingestion

Apache deprecated support for Druid firehoses in version 0.17. Support for firehose ingestion will be removed in version 26.0.

If you're using a firehose for batch ingestion, we strongly recommend that you follow the instructions on this page to transition to using native batch ingestion input sources as soon as possible.

Firehose ingestion doesn't work with newer Druid versions, so you must be using an ingestion spec with a defined input source before you upgrade.

Migrate from firehose ingestion to an input source

To migrate from firehose ingestion, you can use the Druid console to update your ingestion spec, or you can update it manually.

Use the Druid console

To update your ingestion spec using the Druid console, open the console and copy your spec into the Edit spec stage of the data loader.

Druid converts the spec into one with a defined input source. For example, it converts the example firehose ingestion spec below into the example ingestion spec after migration.

If you're unable to use the console or you have problems with the console method, the alternative is to update your ingestion spec manually.

Update your ingestion spec manually

To update your ingestion spec manually, copy your existing spec into a new file. Refer to Native batch ingestion with firehose (Deprecated) for a description of firehose properties.

Edit the new file as follows:

  1. In the ioConfig component, replace the firehose definition with an inputSource definition for your chosen input source. See Native batch input sources for details.
  2. Move the timeStampSpec definition from parser.parseSpec to the dataSchema component.
  3. Move the dimensionsSpec definition from parser.parseSpec to the dataSchema component.
  4. Move the format definition from parser.parseSpec to an inputFormat definition in ioConfig.
  5. Delete the parser definition.
  6. Save the file.
    You can check the format of your new ingestion file against the migrated example below.
  7. Test the new ingestion spec with a temporary data source.
  8. Once you've successfully ingested sample data with the new spec, stop firehose ingestion and switch to the new spec.

When the transition is complete, you can upgrade Druid to the latest version. See the Druid release notes for upgrade instructions.

Example firehose ingestion spec

An example firehose ingestion spec is as follows:

{
  "type" : "index",
  "spec" : {
     "dataSchema" : {
        "dataSource" : "wikipedia",
        "metricsSpec" : [
           {
              "type" : "count",
              "name" : "count"
           },
           {
              "type" : "doubleSum",
              "name" : "added",
              "fieldName" : "added"
           },
           {
              "type" : "doubleSum",
              "name" : "deleted",
              "fieldName" : "deleted"
           },
           {
              "type" : "doubleSum",
              "name" : "delta",
              "fieldName" : "delta"
           }
        ],
        "granularitySpec" : {
           "type" : "uniform",
           "segmentGranularity" : "DAY",
           "queryGranularity" : "NONE",
           "intervals" : [ "2013-08-31/2013-09-01" ]
        },
        "parser": {
           "type": "string",
           "parseSpec": {
              "format": "json",
              "timestampSpec" : {
                 "column" : "timestamp",
                 "format" : "auto"
              },
              "dimensionsSpec" : {
                 "dimensions": ["country", "page","language","user","unpatrolled","newPage","robot","anonymous","namespace","continent","region","city"],
                 "dimensionExclusions" : []
              }
           }
        }
     },
     "ioConfig" : {
        "type" : "index",
        "firehose" : {
           "type" : "local",
           "baseDir" : "examples/indexing/",
           "filter" : "wikipedia_data.json"
        }
     },
     "tuningConfig" : {
        "type" : "index",
        "partitionsSpec": {
           "type": "single_dim",
           "partitionDimension": "country",
           "targetRowsPerSegment": 5000000
        }
     }
  }
}

Example ingestion spec after migration

The following example illustrates the result of migrating the example firehose ingestion spec to a spec with an input source:

{
 "type" : "index",
 "spec" : {
   "dataSchema" : {
     "dataSource" : "wikipedia",
     "timestampSpec" : {
       "column" : "timestamp",
       "format" : "auto"
     },
     "dimensionsSpec" : {
       "dimensions": ["country", "page","language","user","unpatrolled","newPage","robot","anonymous","namespace","continent","region","city"],
       "dimensionExclusions" : []
     },
     "metricsSpec" : [
       {
         "type" : "count",
         "name" : "count"
       },
       {
         "type" : "doubleSum",
         "name" : "added",
         "fieldName" : "added"
       },
       {
         "type" : "doubleSum",
         "name" : "deleted",
         "fieldName" : "deleted"
       },
       {
         "type" : "doubleSum",
         "name" : "delta",
         "fieldName" : "delta"
       }
     ],
     "granularitySpec" : {
       "type" : "uniform",
       "segmentGranularity" : "DAY",
       "queryGranularity" : "NONE",
       "intervals" : [ "2013-08-31/2013-09-01" ]
     }
   },
   "ioConfig" : {
     "type" : "index",
     "inputSource" : {
       "type" : "local",
       "baseDir" : "examples/indexing/",
       "filter" : "wikipedia_data.json"
      },
      "inputFormat": {
        "type": "json"
      }
   },
   "tuningConfig" : {
     "type" : "index",
     "partitionsSpec": {
       "type": "single_dim",
       "partitionDimension": "country",
       "targetRowsPerSegment": 5000000
     }
   }
 }
}

Learn more

For more information, see the following pages:

  • Ingestion: Overview of the Druid ingestion process.
  • Native batch ingestion: Description of the supported native batch indexing tasks.
  • Ingestion spec reference: Description of the components and properties in the ingestion spec.
โ† Native batch: input sourcesFirehose (deprecated) โ†’
  • Migrate from firehose ingestion to an input source
    • Use the Druid console
    • Update your ingestion spec manually
    • Example firehose ingestion spec
    • Example ingestion spec after migration
  • Learn more

Technologyโ€‚ยทโ€‚Use Casesโ€‚ยทโ€‚Powered by Druidโ€‚ยทโ€‚Docsโ€‚ยทโ€‚Communityโ€‚ยทโ€‚Downloadโ€‚ยทโ€‚FAQ

โ€‚ยทโ€‚โ€‚ยทโ€‚โ€‚ยทโ€‚
Copyright ยฉ 2022 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.