Apache Druid
  • Technology
  • Use Cases
  • Powered By
  • Docs
  • Community
  • Apache
  • Download

โ€บHidden

Getting started

  • Introduction to Apache Druid
  • Quickstart (local)
  • Single server deployment
  • Clustered deployment

Tutorials

  • Load files natively
  • Load files using SQL ๐Ÿ†•
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Theta sketches
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Tutorial: Run with Docker
  • Kerberized HDFS deep storage
  • Convert ingestion spec to SQL
  • Jupyter Notebook tutorials

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Data model
  • Data rollup
  • Partitioning
  • Ingestion spec
  • Schema design tips
  • Stream ingestion

    • Apache Kafka ingestion
    • Apache Kafka supervisor
    • Apache Kafka operations
    • Amazon Kinesis

    Batch ingestion

    • Native batch
    • Native batch: input sources
    • Migrate from firehose
    • Hadoop-based

    SQL-based ingestion ๐Ÿ†•

    • Overview
    • Key concepts
    • API
    • Security
    • Examples
    • Reference
    • Known issues
  • Task reference
  • Troubleshooting FAQ

Data management

  • Overview
  • Data updates
  • Data deletion
  • Schema changes
  • Compaction
  • Automatic compaction

Querying

    Druid SQL

    • Overview and syntax
    • SQL data types
    • Operators
    • Scalar functions
    • Aggregation functions
    • Multi-value string functions
    • JSON functions
    • All functions
    • Druid SQL API
    • JDBC driver API
    • SQL query context
    • SQL metadata tables
    • SQL query translation
  • Native queries
  • Query execution
  • Troubleshooting
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Nested columns
    • Multitenancy
    • Query caching
    • Using query caching
    • Query context

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Java runtime
  • Security

    • Security overview
    • User authentication and authorization
    • LDAP auth
    • Password providers
    • Dynamic Config Providers
    • TLS support

    Performance tuning

    • Basic cluster tuning
    • Segment size optimization
    • Mixed workloads
    • HTTP compression
    • Automated metadata cleanup

    Monitoring

    • Request logging
    • Metrics
    • Alerts
  • API reference
  • High availability
  • Rolling updates
  • Using rules to drop and retain data
  • Working with different versions of Apache Hadoop
  • Misc

    • dump-segment tool
    • reset-cluster tool
    • insert-segment-to-db tool
    • pull-deps tool
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Druid AWS RDS Module
  • Kubernetes
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Prometheus Emitter
  • kubernetes
  • Cardinality/HyperUnique aggregators
  • Select
  • Firehose (deprecated)
  • Native batch (simple)
  • Realtime Process
Edit

DataSketches Tuple Sketch module

This module provides Apache Druid aggregators based on Tuple sketch from Apache DataSketches library. ArrayOfDoublesSketch sketches extend the functionality of the count-distinct Theta sketches by adding arrays of double values associated with unique keys.

To use this aggregator, make sure you include the extension in your config file:

druid.extensions.loadList=["druid-datasketches"]

For additional sketch types supported in Druid, see DataSketches extension.

Aggregator

{
  "type" : "arrayOfDoublesSketch",
  "name" : <output_name>,
  "fieldName" : <metric_name>,
  "nominalEntries": <number>,
  "metricColumns" : <array of strings>,
  "numberOfValues" : <number>
 }
PropertyDescriptionRequired?
typeThis string should always be "arrayOfDoublesSketch"yes
nameString representing the output column to store sketch values.yes
fieldNameA string for the name of the input field.yes
nominalEntriesParameter that determines the accuracy and size of the sketch. Higher k means higher accuracy but more space to store sketches. Must be a power of 2. See the Theta sketch accuracy for details.no, defaults to 16384
metricColumnsWhen building sketches from raw data, an array input column that contain numeric values to associate with each distinct key. If not provided, assumes fieldName is an arrayOfDoublesSketchno, if not provided fieldName is assumed to be an arrayOfDoublesSketch
numberOfValuesNumber of values associated with each distinct key.no, defaults to the length of metricColumns if provided and 1 otherwise

You can use the arrayOfDoublesSketch aggregator to:

  • Build a sketch from raw data. In this case, set metricColumns to an array.
  • Build a sketch from an existing ArrayOfDoubles sketch . In this case, leave metricColumns unset and set the fieldName to an ArrayOfDoubles sketch with numberOfValues doubles. At ingestion time, you must base64 encode ArrayOfDoubles sketches at ingestion time.

Example on top of raw data

Compute a theta of unique users. For each user store the added and deleted scores. The new sketch column will be called users_theta.

{
  "type": "arrayOfDoublesSketch",
  "name": "users_theta",
  "fieldName": "user",
  "nominalEntries": 16384,
  "metricColumns": ["added", "deleted"],
}

Example ingesting a precomputed sketch column

Ingest a sketch column called user_sketches that has a base64 encoded value of two doubles in its array and store it in a column called users_theta.

{
  "type": "arrayOfDoublesSketch",
  "name": "users_theta",
  "fieldName": "user_sketches",
  "nominalEntries": 16384,
  "numberOfValues": 2,
}

Post aggregators

Estimate of the number of distinct keys

Returns a distinct count estimate from a given ArrayOfDoublesSketch.

{
  "type"  : "arrayOfDoublesSketchToEstimate",
  "name": <output name>,
  "field"  : <post aggregator that refers to an ArrayOfDoublesSketch (fieldAccess or another post aggregator)>
}

Estimate of the number of distinct keys with error bounds

Returns a distinct count estimate and error bounds from a given ArrayOfDoublesSketch. The result will be three double values: estimate of the number of distinct keys, lower bound and upper bound. The bounds are provided at the given number of standard deviations (optional, defaults to 1). This must be an integer value of 1, 2 or 3 corresponding to approximately 68.3%, 95.4% and 99.7% confidence intervals.

{
  "type"  : "arrayOfDoublesSketchToEstimateAndBounds",
  "name": <output name>,
  "field"  : <post aggregator that refers to an  ArrayOfDoublesSketch (fieldAccess or another post aggregator)>,
  "numStdDevs", <number from 1 to 3>
}

Number of retained entries

Returns the number of retained entries from a given ArrayOfDoublesSketch.

{
  "type"  : "arrayOfDoublesSketchToNumEntries",
  "name": <output name>,
  "field"  : <post aggregator that refers to an ArrayOfDoublesSketch (fieldAccess or another post aggregator)>
}

Mean values for each column

Returns a list of mean values from a given ArrayOfDoublesSketch. The result will be N double values, where N is the number of double values kept in the sketch per key.

{
  "type"  : "arrayOfDoublesSketchToMeans",
  "name": <output name>,
  "field"  : <post aggregator that refers to a DoublesSketch (fieldAccess or another post aggregator)>
}

Variance values for each column

Returns a list of variance values from a given ArrayOfDoublesSketch. The result will be N double values, where N is the number of double values kept in the sketch per key.

{
  "type"  : "arrayOfDoublesSketchToVariances",
  "name": <output name>,
  "field"  : <post aggregator that refers to a DoublesSketch (fieldAccess or another post aggregator)>
}

Quantiles sketch from a column

Returns a quantiles DoublesSketch constructed from a given column of values from a given ArrayOfDoublesSketch using optional parameter k that determines the accuracy and size of the quantiles sketch. See Quantiles Sketch Module

  • The column number is 1-based and is optional (the default is 1).
  • The parameter k is optional (the default is defined in the sketch library).
  • The result is a quantiles sketch.
{
  "type"  : "arrayOfDoublesSketchToQuantilesSketch",
  "name": <output name>,
  "field"  : <post aggregator that refers to a DoublesSketch (fieldAccess or another post aggregator)>,
  "column" : <number>,
  "k" : <parameter that determines the accuracy and size of the quantiles sketch>
}

Set operations

Returns a result of a specified set operation on the given array of sketches. Supported operations are: union, intersection and set difference (UNION, INTERSECT, NOT).

{
  "type"  : "arrayOfDoublesSketchSetOp",
  "name": <output name>,
  "operation": <"UNION"|"INTERSECT"|"NOT">,
  "fields"  : <array of post aggregators to access sketch aggregators or post aggregators to allow arbitrary combination of set operations>,
  "nominalEntries" : <parameter that determines the accuracy and size of the sketch>,
  "numberOfValues" : <number of values associated with each distinct key>
}

Student's t-test

Performs Student's t-test and returns a list of p-values given two instances of ArrayOfDoublesSketch. The result will be N double values, where N is the number of double values kept in the sketch per key. See t-test documentation.

{
  "type"  : "arrayOfDoublesSketchTTest",
  "name": <output name>,
  "fields"  : <array with two post aggregators to access sketch aggregators or post aggregators referring to an ArrayOfDoublesSketch>,
}

Sketch summary

Returns a human-readable summary of a given ArrayOfDoublesSketch. This is a string returned by toString() method of the sketch. This can be useful for debugging.

{
  "type"  : "arrayOfDoublesSketchToString",
  "name": <output name>,
  "field"  : <post aggregator that refers to an ArrayOfDoublesSketch (fieldAccess or another post aggregator)>
}
โ† DataSketches Theta Sketch moduleBasic Security โ†’
  • Aggregator
    • Example on top of raw data
    • Example ingesting a precomputed sketch column
  • Post aggregators
    • Estimate of the number of distinct keys
    • Estimate of the number of distinct keys with error bounds
    • Number of retained entries
    • Mean values for each column
    • Variance values for each column
    • Quantiles sketch from a column
    • Set operations
    • Student's t-test
    • Sketch summary

Technologyโ€‚ยทโ€‚Use Casesโ€‚ยทโ€‚Powered by Druidโ€‚ยทโ€‚Docsโ€‚ยทโ€‚Communityโ€‚ยทโ€‚Downloadโ€‚ยทโ€‚FAQ

โ€‚ยทโ€‚โ€‚ยทโ€‚โ€‚ยทโ€‚
Copyright ยฉ 2022 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.