Apache Druid
  • Technology
  • Use Cases
  • Powered By
  • Docs
  • Community
  • Apache
  • Download

โ€บHidden

Getting started

  • Introduction to Apache Druid
  • Quickstart (local)
  • Single server deployment
  • Clustered deployment

Tutorials

  • Load files natively
  • Load files using SQL ๐Ÿ†•
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Theta sketches
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Tutorial: Run with Docker
  • Kerberized HDFS deep storage
  • Convert ingestion spec to SQL
  • Jupyter Notebook tutorials

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Data model
  • Data rollup
  • Partitioning
  • Ingestion spec
  • Schema design tips
  • Stream ingestion

    • Apache Kafka ingestion
    • Apache Kafka supervisor
    • Apache Kafka operations
    • Amazon Kinesis

    Batch ingestion

    • Native batch
    • Native batch: input sources
    • Migrate from firehose
    • Hadoop-based

    SQL-based ingestion ๐Ÿ†•

    • Overview
    • Key concepts
    • API
    • Security
    • Examples
    • Reference
    • Known issues
  • Task reference
  • Troubleshooting FAQ

Data management

  • Overview
  • Data updates
  • Data deletion
  • Schema changes
  • Compaction
  • Automatic compaction

Querying

    Druid SQL

    • Overview and syntax
    • SQL data types
    • Operators
    • Scalar functions
    • Aggregation functions
    • Multi-value string functions
    • JSON functions
    • All functions
    • Druid SQL API
    • JDBC driver API
    • SQL query context
    • SQL metadata tables
    • SQL query translation
  • Native queries
  • Query execution
  • Troubleshooting
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Nested columns
    • Multitenancy
    • Query caching
    • Using query caching
    • Query context

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Java runtime
  • Security

    • Security overview
    • User authentication and authorization
    • LDAP auth
    • Password providers
    • Dynamic Config Providers
    • TLS support

    Performance tuning

    • Basic cluster tuning
    • Segment size optimization
    • Mixed workloads
    • HTTP compression
    • Automated metadata cleanup

    Monitoring

    • Request logging
    • Metrics
    • Alerts
  • API reference
  • High availability
  • Rolling updates
  • Using rules to drop and retain data
  • Working with different versions of Apache Hadoop
  • Misc

    • dump-segment tool
    • reset-cluster tool
    • insert-segment-to-db tool
    • pull-deps tool
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Druid AWS RDS Module
  • Kubernetes
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Prometheus Emitter
  • kubernetes
  • Cardinality/HyperUnique aggregators
  • Select
  • Firehose (deprecated)
  • Native batch (simple)
  • Realtime Process
Edit

T-Digest Quantiles Sketch module

This module provides Apache Druid approximate sketch aggregators based on T-Digest. T-Digest (https://github.com/tdunning/t-digest) is a popular data structure for accurate on-line accumulation of rank-based statistics such as quantiles and trimmed means. The data structure is also designed for parallel programming use cases like distributed aggregations or map reduce jobs by making combining two intermediate t-digests easy and efficient.

The tDigestSketch aggregator is capable of generating sketches from raw numeric values as well as aggregating/combining pre-generated T-Digest sketches generated using the tDigestSketch aggregator itself. While one can generate sketches on the fly during the query time itself, it generally is more performant to generate sketches during ingestion time itself and then combining them during query time. The module also provides a postAggregator, quantilesFromTDigestSketch, that can be used to compute approximate quantiles from T-Digest sketches generated by the tDigestSketch aggregator.

To use this aggregator, make sure you include the extension in your config file:

druid.extensions.loadList=["druid-tdigestsketch"]

Aggregator

The result of the aggregation is a T-Digest sketch that is built ingesting numeric values from the raw data or from combining pre-generated T-Digest sketches.

{
  "type" : "tDigestSketch",
  "name" : <output_name>,
  "fieldName" : <metric_name>,
  "compression": <parameter that controls size and accuracy>
 }

Example:

{
    "type": "tDigestSketch",
    "name": "sketch",
    "fieldName": "session_duration",
    "compression": 200
}
{
    "type": "tDigestSketch",
    "name": "combined_sketch",
    "fieldName": <input-column>,
    "compression": 200
}
propertydescriptionrequired?
typeThis String should always be "tDigestSketch"yes
nameA String for the output (result) name of the calculation.yes
fieldNameA String for the name of the input field containing raw numeric values or pre-generated T-Digest sketches.yes
compressionParameter that determines the accuracy and size of the sketch. Higher compression means higher accuracy but more space to store sketches.no, defaults to 100

Post Aggregators

Quantiles

This returns an array of quantiles corresponding to a given array of fractions.

{
  "type"  : "quantilesFromTDigestSketch",
  "name": <output name>,
  "field"  : <post aggregator that refers to a TDigestSketch (fieldAccess or another post aggregator)>,
  "fractions" : <array of fractions>
}
propertydescriptionrequired?
typeThis String should always be "quantilesFromTDigestSketch"yes
nameA String for the output (result) name of the calculation.yes
fieldA field reference pointing to the field aggregated/combined T-Digest sketch.yes
fractionsNon-empty array of fractions between 0 and 1yes

Example:

{
    "queryType": "groupBy",
    "dataSource": "test_datasource",
    "granularity": "ALL",
    "dimensions": [],
    "aggregations": [{
        "type": "tDigestSketch",
        "name": "merged_sketch",
        "fieldName": "ingested_sketch",
        "compression": 200
    }],
    "postAggregations": [{
        "type": "quantilesFromTDigestSketch",
        "name": "quantiles",
        "fractions": [0, 0.5, 1],
        "field": {
            "type": "fieldAccess",
            "fieldName": "merged_sketch"
        }
    }],
    "intervals": ["2016-01-01T00:00:00.000Z/2016-01-31T00:00:00.000Z"]
}

Similar to quantilesFromTDigestSketch except it takes in a single fraction for computing quantile.

{
  "type"  : "quantileFromTDigestSketch",
  "name": <output name>,
  "field"  : <post aggregator that refers to a TDigestSketch (fieldAccess or another post aggregator)>,
  "fraction" : <value>
}
propertydescriptionrequired?
typeThis String should always be "quantileFromTDigestSketch"yes
nameA String for the output (result) name of the calculation.yes
fieldA field reference pointing to the field aggregated/combined T-Digest sketch.yes
fractionDecimal value between 0 and 1yes
โ† StatsD EmitterThrift โ†’

Technologyโ€‚ยทโ€‚Use Casesโ€‚ยทโ€‚Powered by Druidโ€‚ยทโ€‚Docsโ€‚ยทโ€‚Communityโ€‚ยทโ€‚Downloadโ€‚ยทโ€‚FAQ

โ€‚ยทโ€‚โ€‚ยทโ€‚โ€‚ยทโ€‚
Copyright ยฉ 2022 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.